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Abstract. A technique is developed which allows a unified treatment of null, spacelike and 
timelike infinities. Null and spacelike infinities have previously been treated using such 
techniques. The technique is here applied to the projective structure of timelike infinity 
and a number of examples worked out. 

1. Introduction 

Construction of a boundary with a well behaved metric on it has been achieved by 
Penrose (1968) for asymptotically flat spacetimes in null directions, by defining a suitable 
conformal metric. The conformal metric is then used to study the behaviour of zero 
rest mass fields at null infinity. Geroch (1972) has used a conformal completion by a 
single point of smooth three-dimensional spacelike hypersurfaces in a spacetime to 
define asymptotic flatness in spatial directions, and to study the behaviour of the gravita- 
tional field at spatial infinity. 

Recently, Eardly (1970) and Eardly and Sachs (1973), by making a projective change 
of connection, have constructed boundaries for many spacetimes for past and future 
timelike infinities. The projective connection is defined in each case so as to remain well 
behaved at timelike infinity. The boundary in the projective space is defined as a set of 
points each of which is an equivalence class of timelike geodesics parallel in the infinite 
past or future. 

In this paper the idea of a generalized conformal transformation is introduced. 
Roughly speaking, this is like a conformal transformation with different factors in 
different directions. More precisely, spacetime is foliated by a one-parameter family of 
smooth hypersurfaces and different conformal transformations are carried out (i) in the 
hypersurfaces of the family and (ii) in the space of normals. It will be shown that the 
Eardly-Sachs construction can be achieved using such a transformation and that the 
Penrose and Geroch constructions are (as is fairly obvious) also special cases. 

2. Generalized conformal transformations 

Let ( M ,  gap) be a smooth (Ck, k > 2) connected time-orientable spacetimt. Greek 
indices run over (1,2,3,4) and Latin indices run over (1,2,3). 

Consider a set of three-dimensional spacelike hypersurfaces S in M and lei qa be 
the unit normal vector field to the hypersurfaces. The metric for the space of normals 
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to the hypersurfaces is 

V u g  = Va11p. 

The indices of vas are raised and lowered with gap. 
Write 

gu, = Vap +(gap - Vap).  (2) 

Then (gap - vu,) is the metric for the set of spacelike hypersurfaces S .  A generalized 
conformal transformation is a change of metric, 

gap + t u ,  = eZ'lllaD + eZR(gab - Vap) ,  (3) 

where t,b and R are smooth functions on M .  
Three relations of interest between t,b and R arise. 
(i) I) = R # 0. This is a conformal transformation, used for treating null infinity. 
(ii) $ = 0, R # 0. In this case, a conformal transformation is applied in each space- 

like hypersurface only. This is the transformation used in Geroch's treatment of spntial 
infinity. 

(iii) I) # 0, 51 # 0 and I) # R. This will be called a quasi-conformal transformation. 
It will be shown that, with a suitable choice of t,b and R the transformation induces a 
projective change of connection with which the Eardly-Sachs boundaries may be re- 
constructed. 

For any of the above cases, the inverse of is 

= ,-2'lq@+,-zn (g aP -ila9. (4) 

The induced change of connection is 

where the comma denotes a partial derivative and Ai, = Aia is a complicated expression 
given explicitly in the appendix. 

Any projective change of connection has the form 

where qa is a covariant vector field. Geodesics remain invariant under such trans- 
formations. 

Comparison of ( 5 )  and (6) suggests one obvious way to construct a generalized 
conformal transformation which is also projective, namely to set 

A$ = 0. (7) 

Q,u = 4 , .  (8) 

Then (5) is a projective change of connection with 

Now work in a coordinate patch in which (cf equation (2)) 

gi4 = 0 
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Equations (7) then reduce to 

*,4 = 212.4 

*,i = ' , i  

gija,4++(1 -e'"")g.. I J , 4  = 0 

3. The Eardly-Sachs asymptotic conditions 

Eardly (1970) and Eardly and Sachs (1973) introduce a coordinate patch in which x4 is 
a timelike function w, decreasing into the future and zero in the infinite future. Functions 
$ and 12 will be found such that (i) the metric and the connection remain well behaved 
throughout the coordinate patch and (ii) the change in the connection is a projective 
one, ie, equations (lOa)+lOe) are satisfied. Then it can be shown (Eardly 1970, Eardly 
and Sachs 1973) that a point on the surface Wis an equivalence class of timelike geodesics 
parallel in the infinite future. 

Let a coordinate patch P be chosen in M with coordinates (Eardly 1970) 
{xu} = {w, xi} E 0, where 0, = (0, wo) x Oi, and Oi is an open subset of R,. Let W 
denote the surface w = 0. Now define P = P U W c M v W ;  the coordinates on P 
are {X") E [0, wo)  x O i  = 0,. Consider Ck(k 2 2) manifolds admitting in such a co- 
ordinate patch the metric form 

(1 1) ds2 = w - ~ ~  eZF dw2 - w-"Lij dx' dxj, 

where 

(a) F(w)  and Li,(xz) are Ck-' on 02, 
(b) F = Ofor w = 0, 
(c )  Lij is a positive definite metric on Oi for each w E [0, wo), 
( d )  n 2 1 is an integer. 
The singular terms on W in the components of the Christoffel symbols for such a 

metric are 

n 
r444 = --+F,, W 

With the coordinate system chosen as above, set 
II/. = a .  = 0. 

Then (1Oc) to (10e) are satisfied and the only equations remaining to be solved are (loa) 
and (lob). Equation (loa) gives 

* = 2R+C (13) 
where C is a constant of integration. 
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Having obtained this, we can now check that the necessary conditions (loa) to  (10e) 
are also sufficient for the quasi-conformal transformation to correspond to a projective 
change of the connection. A necessary and sufficient condition that two metrics for a 
spacetime be projectively related is that (Schouten 1954) 

where q. is the covariant vector field in (6) and 6 and g are the determinants of the two 
metrics. 

From (13) and (3) on the other hand it follows that 

Hence 

4. = Q,O 

which is consistent with the assumption (8). The problem now reduces to that of solving 
(lob) and R so obtained must eliminate the singular terms in (12a) and (12b). 

4. Examples 

4.1. Minkowski spacetime 

The metric can be written in the form 

ds2 = w - ~  d w 2 - w - 2 [ d , ~ 2 + ~ i n h 2 ~ ( d 2 B + ~ i n z B d ~ 2 ) ] ,  

where 

1 
r = - sinh 1 

W 

and ( t ,  r ,  8,4) E ( -  CO, m )  x [0, x) x [0, z] x [0,271) are the usual polar coordinates for 
the Minkowski spacetime. 

Equation (lob) gives 

R = In w-+ln(l+w2), 

(The constants of integration obtained when solving (loa) and (lob) can result only in 
scaling factors on the metric on Wand are chosen here, as in all other examples, to make 
the scaling factor unity.) 

Hence 
1 w  
W l + w  

R,4 = --7 = q4 

R i  = 0 = qi .  
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With q. given as above, the singular terms in (12a) and (126) are eliminated. The 
quasi-conformally related metric is 

1 
[dx’ + sinh2X(d02 +sin% dr#?)]. 

1 dSZ = ~ (1 + w2)2 dw2 -- 1+w2 

Putting w = 0, the metric on the spacelike boundary is 

d12 = dXZ +sinh2X(d02 +sin% d@) 

The surface is a three-pseudosphere. 
(To agree with the notation of Eardly and Sachs (1973) write 

d12 = dx2 + sinh’x dY;, 

dY: = de2 +sin% d@ 

where 

and in general 

dY: = dc? +sin2a dYi- 

where c1 is a coordinate.) 

4.2. De Sitter spucetime 

The metric can be written (Heckman and Schiicking 1962) 

ds2 = dt2-coShZtdY~,  

where - x < t < a. Substitution of w = e-”  yields 

ds2 = w-2dwz-w-1 (l+w)’d’€’;. 

Using this, equation (106) gives 

Q = ‘In 2 w-+ln(w2+3w+1) 

1 W + ;  
Q,4 = -- = q4 2w wz+3w+1 

Also 
a i  = 0 = 4;.  

The singular terms in (12a) and (126) are again eliminated. The quasi-conformal metric 
is 

Putting w = 0, the metric on W is dY: 

4.3. Friedman model with k = 0 

The metric is (Heckman and Schiicking 1962) 

ds2 = dt2-t4‘3dE:, 

where t E (0, a) and dE: is the metric of a flat three-space. 
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Let 
t = L w - 3  

ds2 = w - ~  dw2 - w - ~  dE:, 

3 .  

Then 

and (lob) gives 

R = 21n w-+1n( l+w4)  

2 2w3 
R, - - - y = q 4  4 - w  l + w  

Q . = O = q . .  

The connection becomes nonsingular again and the quasi-conformal metric is 

1 
dW2 -- dE:. 

1 d32 = ____ 
(1 + W4l2 1 +w4  

The surface W is flat. 

4.4. Friedman model with k = - 1 

The metric can be written in the form (Heckman and Schiicking 1962) 

ds2 = dt2-R2(t)d12, 

where d12 is the line element of a three-pseudosphere and t = a (sinh r]  - r ] ) ,  

R(t)  = a (cosh r ] -  1) with a as a constant and r]  a parameter, E (0, x). 
Choose (Eardly 1970) 

and 
a = 2. 

Then 

ds2 = ~ - ~ ( l +  w ) - ~  dw2 - ~ - ~ ( 1 +  w ) - ~  d12. 

(lob) now gives 

R = In w + I n ( l +  w1-3  ln[w2(1 + w)’+ 11 

1 1 2 w 3 + 3 w 2 + w  
Q --+-- 

,4 - 1 + w w2(1+ w)2+ 1 = q4.  

Further, 
R . = O = q .  I ‘  

The quasi-conformal metric is again well behaved and the transformed metric is 

d12 
1 

dw2 - 
1 di2 = 

[w2( 1 + w)2 + 132 w2( 1 + w)2 + 1 

The metric on W is dl’. W is a three-pseudosphere. 
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4.5. The Schwarzschild spacetime 

The usual metric 

- r2  dYi  dr2 ds2 = 1-- dt2-  ( 'y) 1-2M/r 

can be transformed, using the substitution t = w - l  cosh a, r = w - l  sinh a and 
sinh a = sinh x+ wh(w, sinh x) where h is regular, into the form (Eardly 1970) 

cosh2x + sinh'x 
sinh x 

- ~ - ~ [ ( 1  +O(w)) dx2 +sinh2x(1 +O(w)) dYz]. (16) 

Since the function F in (1 1) is heref(w, xi ) ,  it is evident that q44,, # 0 and we cannot 

ds2 = w - ~  e2fdw2-wW-2[(1+O(w))dx2+sinh2x(1 +O(w))dY':]. (17) 

The range of x is chosen E < x < CO, where E > 0, to  avoid the black hole. 

identically satisfy (1Oc) to (10e) by setting = $,j = 0. Write (16) in the form 

Consider the conformally related metric 

dS2 = ds2. (18) 
Then (1Oc) to (10e) are satisfied using dS2 and we are left with (lob). The exact form of 
the solution of (lob) away from W need not concern us here. In the limit 

w + 0, 

dS2 = w - ~  dw2 - w-2(dx2 +sinh2x dxi). 
(18) tends to 

The solution for SZ in (lob) is as in the flat case with 

SZ = In w-+ln(l+w2) 

di2 N dw2 -(dx2 +sinh2x dYi). 

di2 = e2"w-4dw2-e2Yw-2[(1 +O(w))dx2+(1 +O(w))sinh2$ dY;] 

e2a = w4 e-2f, 

and 

Let 

where 
e2Y = w2 e-2f. 

It is evident that the quasi-conformal factors 0 and y now represent a projective 
change of connection plus a conformal transformation. On W, where the approximations 
become exact, 0 and y will represent a projective change of connection only. W is a 
three-pseudosphere as in the Minkowski case but the range of x is chosen to avoid the 
black hole. 

5. Conclusion 

It seems that the success of the 'generalized conformal transformation' technique in 
treating infinity in the three directions is related intimately to that of choosing a suitable 
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coordinate system. The metric expressed in these coordinates is conformally or quasi- 
conformally related to  one which is well behaved at infinity in any of the three directions 
under consideration. The conformal or quasi-conformal factors diverge at infinity and 
are removed by a generalized conformal transformation. 

The impossibility of any smooth connection between an Eardly-Sachs timelike 
boundary and a Penrose null boundary is shown by equation (13). This is why, topo- 
logically, gluing of these two boundaries is non-Hausdorff (R K Sachs, private com- 
munication). 
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Appendix 

The expression for A$ can most easily be obtained by writing (3) in the form 

L o  = e 2 k p  f e2yrlap 

= e2*-e2Q 

(A. 1) 
where 

and 
g " P  = e - 2 0  g aP +e-2aqaP 

where 
- 2Q e-2a  = e-'*-e . 

Then 
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